Journal of Organometallic Chemistry, 268 (1984) 191–195 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

2-[(DIMETHYLAMINO)METHYL]PHENYLGOLD(III) COMPLEXES

J. VICENTE*, M.T. CHICOTE and M.D. BERMÚDEZ Departamento de Química Inorgánica, Universidad de Murcia (Spain) (Received January 13th, 1984)

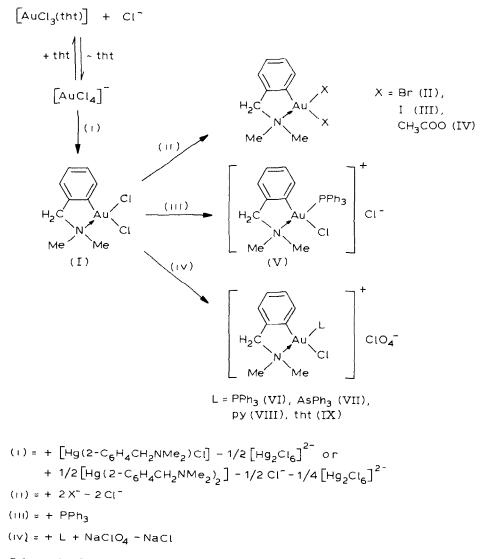
Summary

[Hg(2-C₆H₄CH₂NMe₂)Cl] reacts with Me₄N[AuCl₄] or with [AuCl₃(tht)] (tht = tetrahydrothiophene) in the presence of Me₄NCl to give [Au(2-C₆H₄CH₂NMe₂)Cl₂]. The same complex can also be obtained by treating [Hg(2-C₆H₄CH₂NMe₂)₂] with Me₄N[AuCl₄]. The reactions of [Au(2-C₆H₄CH₂NMe₂)Cl₂] with (i) KBr, KI or AgOO<u>CCH₃ give [Au(2-C₆H₄CH₂NMe₂)X₂] (X = Br, I, OOCCH₃), (ii) with PPh₃ give [Au(2-C₆H₄CH₂NMe₂)Cl(PPh₃)]Cl and (iii) with AsPh₃, <u>py or tht in the</u> presence of NaClO₄ lead to the cationic complexes [Au(2-C₆H₄CH₂N-Me₂)Cl(L)]ClO₄.</u>

Introduction

2-[(Dimethylamino)methyl]phenyl complexes have been obtained by ortho- or trans-metallation reactions using the corresponding lithium derivatives [1]. In spite of the high reactivity of anhydrous gold(III) halides towards benzene to give phenylgold(III) complexes [2] these auration reactions are inhibited by the presence of a coordinating substituent in the aromatic ring [3,4]. In fact N, N-dimethylbenzyl-amine reacts with gold(III) bromide or chloride to give trihalogold(III) complexes containing the amine as a ligand or the ammonium $[AuX_4]^-$ or $[AuX_2]^-$ salts [4], but ortho-metallated complexes (i.e. 2-[(dimethylamino)methyl] complexes) were not obtained. Similar results were obtained when azobenzene was used [4-6]. We have recently shown that the ortho-metallated complex dichloro[2-(phenylazo)-phenyl]gold(III) can be obtained by using chloro[2-phenylazo)phenyl]mercury [7]. In the present paper we present a new method for preparing complexes of 2-[(dimethylamino)methyl]phenyl using its mercury derivatives as arylating agents, and the synthesis of the first such derivatives of gold(III).

Results and discussion


When $[AuCl_3(tht)]$ (tht = tetrahydrothiophene), $[Hg(2-C_6H_4CH_2NMe_2)Cl]$ [8] and Me_4Cl are reacted in acetone (1/1/1) $Me_4N[Hg_2Cl_6]$ precipitates and a

solution of the complex $[Au(2-C_6H_4CH_2NMe_2)Cl_2]$ (I) is obtained. The complex can also be prepared by reacting Me₄N[AuCl₄] with [Hg(2-C₆H₄CH₂NMe₂)Cl] (1/1), or with [Hg(2-C₆H₄CH₂NMe₂)₂] [9] (1/1 or 2/1).

When [AuCl₃(tht)] or Me₄N[AuCl₄] were treated in diethyl ether with Li(2- $C_6H_4CH_2NMe_2$) [9] (1/1), immediate precipitation of gold or unidentified species which contain lithium were obtained. Complex I was not detected.

The reactions of I with KBr (1/3.5), KI (1/2) or AgOOCCH₃ (1/2) in acetone give complexes [Au(2-C₆H₄CH₂NMe₂)X₂] [X = Br (II), I (III), CH₃COO (IV)] (see

SCHEME 1

Scheme 1). Complexes I-IV are non-conducting in acetone solution. The ¹H NMR spectrum of I in acetone- d_6 (TMS) shows peaks at δ 3.26 (s, 6H, CH₃), 4.63 (s, 2H, CH₂), 6.54 (m, 3H, 3-, 4- and 5-phenyl protons) and 7.18 (d, 1H, 6-phenyl proton)

ppm, assigned according to the spectra of related complexes [10]. The ¹H NMR spectrum of II is identical to that of I. The complex III is unstable in solution. The main difference between the IR spectra of I and II, III or IV is the presence of two strong bands at 350 and 300 cm⁻¹ in I; these can be assigned to ν (AuCl) *trans* to N and phenyl, respectively. Such a great difference in the position of the bands is in accordance with the stronger *trans*-influence of phenyl with respect to N-donor ligands. In the related [Au(2-C₆H₄N=NC₆H₅)Cl₂] complex they appear, respectively, at 370 and 305 cm⁻¹ [7]. The corresponding ν (Au–Br) and ν (Au–I) in II and III are expected to fall below the range of our spectrophotometer. Complex IV shows strong bands at 1670, 1620 [ν_{asym} (CO₂)] 1370 and 1315 [ν_{sym} (CO₂)] cm⁻¹.

The reaction between I and PPh₃ (1:1) in dichloromethane gives the cationic complex $[Au(2-C_6H_4CH_2NMe_2)Cl(PPh_3)]Cl$ (V) that shows a strong band at 310 cm⁻¹ in its IR spectrum. According to the assignment made for I this band corresponds to $\nu(AuCl)$ trans to the phenyl group. The reaction of $[Pd(2-C_6H_4CH_2NMe_2)Cl]_2$ with PPh₃ leads to $[Pd(2-C_6H_4CH_2NMe_2)Cl(PPh_3)]$, where the chloro-ligand is also trans to the phenyl group [11].

 $[Au(2-C_6H_4CH_2NMe_2)Cl(PPh_3)]ClO_4$ (VI) can be obtained by reacting V with NaClO₄ (1/1) in acetone or I with PPh₃ and NaClO₄ (1/1/1) in acetone.

Complex I reacts neither with poorer donor ligands (such as AsPh₃, py or tht) nor with NaClO₄, but it does react with the neutral ligands in the presence of NaClO₄ (1/1/1), leading to complexes of the type [Au(2-C₆H₄CH₂NMe₂)Cl(L)]ClO₄ [L = AsPh₃ (VII), py (VIII), tht (IX)]. Complexes VIII and IX show a band at 315 and 307 cm⁻¹, respectively, that can also be assigned to ν (AuCl) *trans* to the phenyl group. The corresponding ν (AuCl) in VII is masked by several bands corresponding to AsPh₃. Scheme 1 summarizes the reactions leading to complexes I–IX.

<u>The</u> reactivity of I is quite different from that of the related [Au(2- $C_6H_4N=N-C_6H_5$)Cl₂][7], because this complex reacts (i) with PPh₃ or AsPh₃ (1/1) to give complexes of the [Au(2- $C_6H_4N=N-C_6H_5$)Cl₂L] type by cleavage of the Au-N bond, and (ii) with PPh₃ (1/2) to give the cationic complex *trans*-[Au(2- $C_6H_4N=NC_6H_5$)Cl(PPh₃)₂]⁺ only in the presence of NaClO₄ otherwise the neutral adduct [Au(2- $C_6H_4N=N-C_6H_5$)Cl₂(PPh₃)] is isolated. With I the cleavage of the Au-N bond is not observed, even if a molar ratio PPh₃/I of 2/1 is used, and only V is isolated. Similar results have been observed for the corresponding palladium complexes [11,12].

Experimental

IR spectra were recorded on a Perkin-Elmer 457 spectrophotometer using Nujol mulls between polyethylene sheets. Conductivities were measured in 5×10^{-4} M solutions with a Philips 9501 conductimeter. Melting points were determined on a Reichert apparatus and are uncorrected. C, H and N analyses were carried out with a Perkin-Elmer 240C microanalyzer. Au was determined by ashing the samples with an aqueous solution of hydrazine. Solvents were distilled before use. All the reactions were carried out at room temperature. The recipes are for the highest yield method. The analytical data are reported as found (calcd.) $\pm 0.05\%$.

 $[Au(2-C_6H_4CH_2NMe_2)Cl_2]$ (I). To a solution of $[AuCl_3(tht)]$ (202 mg, 0.52 mmol) in acetone (15 ml), the solids $[Hg(2-C_6H_4CH_2NMe_2)Cl]$ (194 mg, 0.52 mmol)

and Me₄NCl (57 mg, 0.52 mmol) were added, the resulting suspension was stirred for 24 h and then concentrated to dryness. The residue was extracted with dichloromethane (5 × 5 ml) and the extract was concentrated (5 ml). Addition of diethyl ether (15 ml) caused precipitation of a white crystalline solid, which was filtered off and washed with diethyl ether to give I (88% yield), m.p. 185°C (d). Anal.: C, 27.45 (26.90); H. 3.25 (3.00); N, 3.55 (3.50); Au, 48.25 (49.00%).

 $[\dot{A}u(2-C_6H_4CH_2\dot{N}Me_2)Br_2]$ (II). To a solution of I (50 mg, 0.12 mmol) in acetone (12 ml) solid KBr (52 mg, 0.43 mmol) was added, the resulting suspension stirred for 6 h and then concentrated to dryness. The residue was extracted with dichloromethane (3 × 5 ml) and the extract was concentrated (1 ml). Addition of diethyl ether (10 ml) caused precipitation of a yellow solid, which was filtered off, washed with diethyl ether and recrystallized from dichloromethane/diethyl ether to give II (93% yield), m.p. 172°C (d). Anal.: C, 22.55 (22.05); H, 2.95 (2.45); N, 2.75 (2.85); Au, 39.80 (40.10%).

 $[Au(2-C_6H_4CH_2NMe_2)I_2]$ (III). To a solution of I (60 mg, 0.15 mmol) in acetone (10 ml) solid KI (50 mg, 0.30 mmol) was added, the resulting suspension stirred for 15 min and filtered. The filtrate was concentrated (1 ml) and addition of diethyl ether (10 ml) caused precipitation of III as a red solid (80% yield), m.p. $105^{\circ}C$ (d). Anal.: C, 19.10 (18.50); H, 2.40 (2.05); N, 2.20 (2.40); Au, 34.00 (33.65%).

 $[Au(2-C_6H_4CH_2NMe_2)(OOCH_3)_2]$ (IV). To a solution of I (56 mg, 0.14 mmol) in acetone (10 ml), solid AgOOCCH₃ (58 mg, 0.34 mmol) was added, the resulting suspension stirred for 3 h under N₂ and then concentrated to dryness. The residue was treated as described for II, to give IV as a white solid (67% yield), m.p. 135°C (d). <u>Anal.: C, 35.35 (34.75);</u> H, 4.35 (4.05); N, 3.15 (3.10); Au, 43.55 (43.85%).

 $[Au(2-C_6H_4CH_2NMe_2)Cl(PPh_3)]Cl$ (V). To a suspension of I (40 mg, 0.10 mmol) in dichloromethane (20 ml) solid PPh₃ (26 mg, 0.10 mmol) was added, the resulting solution stirred for 30 min and then concentrated to 1 ml. Addition of diethyl ether (10 ml) caused precipitation of a solid, which was filtered off and washed with diethyl ether to give V as a yellow solid (91% yield), m.p. 174°C, which was recrystallized from dichloromethane/diethyl ether. $\Lambda_M = 165 \ \Omega^{-1} \ cm^2 \ mol^{-1} \ (4 \times 10^{-4} \ M \ in acetonitrile)$. Anal.: C, 48.50 (48.80); H, 4.55 (4.10); N, 1.50 (2.10); Au, 29.15 (29.65%).

[$Au(2-C_6H_4CH_2NMe_2)Cl(PPh_3)$]ClO₄ (VI). To a solution of I (50 mg, 0.12 mmol) in acetone (7 ml), the solids PPh₃ (33 mg, 0.12 mmol) and NaClO₄ (15 mg, 0.12 mmol) were added, the resulting suspension stirred for 30 min and then concentrated to dryness. The residue was treated as described for II to give VI as a white solid (86% yield), m.p. 140°C(d). $\Lambda_M = 104 \ \Omega^{-1} \ \text{cm}^2 \ \text{mol}^{-1}$ (3.5 × 10⁻⁴ M in acetone). Anal.: C, 45.25 (44.50); H, 4.35 (3.75); N, 1.80 (1.90); Au, 26.70 (27.05)%.

 $[Au(2-C_6H_4CH_2NMe_2)Cl(L)]ClO_4$ (VII-IX). To solutions of I (0.1 mmol) in acetone (10 ml) were added a stoichiometric amount (AsPh₃) or an excess (py, tht) of the ligand and stoichiometric amounts of NaClO₄, and the resulting suspension was stirred (14 h for VII and IX or 1 h for VIII) and then filtered. The residues were treated as described for II to give VII-IX as white solids (78, 70 and 54% yield), m.p. 187°C(d), 175°C(d) and 178°C(d), respectively. $\Lambda_M = 107$, 115 and 109 Ω^{-1} cm² mol⁻¹ (3-4 × 10⁻⁴ M in acetone), respectively. Anal.: VII C, 42.45 (41.95); H, 3.90 (3.50); N, 1.75 (1.80); Au, 25.20 (25.50%); VIII C, 31.35 (30.85); H, 3.00 (3.15); N, 4.50, (5.15); Au, 35.75 (36.15%); IX C, 28.45 (28.15); H, 3.65 (3.65); H, 2.75 (2.55); Au, 35.05 (35.55%).

Acknowledgement

The authors express their gratitude to Prof. P. Molina and Dr. M. Alajarin for ¹H NMR facilities.

References

- 1 J. Dehand and M. Pfeffer, Coord. Chem. Rev., 18 (1976) 327; M.I. Bruce, Angew. Chem. Int. Ed. Engl., 16 (1977) 73; I. Omae, Chem. Rev., 79 (1979) 287.
- 2 M.S. Kharasch and H.S. Isbell, J. Am. Chem. Soc., 53 (1931) 53; M.S. Kharasch and T.M. Beck, J. Am. Chem. Soc., 56 (1934) 2057.
- 3 P.W.J. de Graaf, J. Boersma and G.J. Van der Kerk, J. Organomet. Chem., 105 (1976) 399.
- 4 P.K. Monaghan and R.J. Puddephatt, Inorg. Chim. Acta, 15 (1975) 231.
- 5 R. Hüttel and A. Konietzny, Chem. Ber., 106 (1973) 2098.
- 6 F. Calderazzo and D. Belli Dell'Amico, J. Organomet. Chem., 76 (1974) C59.
- 7 J. Vicente and M.T. Chicote, Inorg. Chim. Acta, 54 (1981) L259; J. Vicente, M.T. Chicote and M.D. Bermúdez, Inorg. Chim. Acta, 63 (1982) 35.
- 8 A.F.M.G. van der Ploeg, C.E.M. van der Kolk and G. van Koten, J. Organomet. Chem., 212 (1981) 283.
- 9 F.N. Jones, M.F. Zinn and C.R. Hauser, J. Org. Chem., 28 (1963) 665.
- G. Longoni, P. Fantucci, P. Chini and F. Canziani, J. Organomet. Chem., 39 (1972) 413; G. van Koten and J.G. Noltes, J. Organomet. Chem., 84 (1975) 129; G. van Koten, C.A. Shaap, J.T.B.H. Jastrzebski and J.G. Noltes, J. Organomet. Chem. 186 (1980) 127; N. Barr and S.F. Dyke, J. Organomet. Chem., 243 (1983) 223; R. Barbieri, A. Silvestri, G. van Koten and J.G. Noltes, Inorg. Chim. Acta, 40 (1980) 267; J.T.B.H. Jastrzebski, G. van Koten, D.G. Tuck, H.A. Meinema and J.G. Noltes, Organometallics, 1 (1982) 1492; C, Arlen, M. Pfeffer, O. Bars and D. Grandjean, J. Chem. Soc., Dalton Trans., (1983) 1535; G. van Koten and J.G. Noltes, J. Organomet. Chem., 171 (1979) C39.
- 11 B. Crociani, T. Boschi, R. Pietropaolo and U. Belluco, J. Chem. Soc. A, (1970) 531.
- 12 D.L. Weaver, Inorg. Chem., 9 (1970) 2250.